Venus Aircraft design evolution 2000- 2008

Geoffrey A. Landis
NASA John Glenn Research Center

Venus Aircraft

Geoffrey A. Landis

Atmospheric exploration trade-study

- Simple technology
- Demonstrated on Venus
- •Altitude change possible, but difficult
- Location change not possible

Airship

- Difficult to stow and deploy
- •Altitude change possible, but difficult
- •Speed is slow:
 - cannot stationkeep
 - cannot stay in sun
 - •Can keep latitude (depending on altitude)

Airplane

- •Airplane design uses terrestrial experience
- Stow and deploy concepts demonstrated by ARES
- Altitude change easy (within design limits)
- •Speed allows stationkeeping and continuous sun
- Easy to keep latitude

Geoffrey A. Landis

Venus Aircraft

(simplified) Aerodynamics of flight on Venus

Horizontal flight requirement: lift on wing = gravity

```
•F = \frac{1}{2} \rho C_L A V^2 = mg
```

Variables

- •ρ (atmospheric density): function of altitude
- •C₁ (lift coefficient): typically around 1 for optimum flight
- •A (wing area)
- V (velocity)

Flight velocity and power:

- •V = SQRT (mg/A)/($2\rho C_L$)
 - •Note that (m/A) = wing loading
- •Power = drag force times velocity
 - •If we make the simplifying assumption that drag is proportional to lift via the L/D (lift to drag) ratio, and C_L is approximately 1:
- •P = mg/(L/D)*V = (mg)^{3/2} (L/D) $(2\rho A)^{-1/2}$

Geoffrey A. Landis

Venus Aircraft

Solar Airplane Figure of Merit

•We can calculate a *solar airplane figure of merit* showing the ratio of sun intensity to the power required for level flight at a given wing area. The solar intensity is proportional to $1/d^2$, and power required to fly proportional to the square root of the atmospheric density. Thus: flying is easiest on a planet close to the sun with high atmospheric density:

If we simplify by neglecting the parasitic drag (proportional to v³) the figure of merit F is

Planet	d	g (gravities)	ρ (bar)	F
	(AU)			
Earth	1	1	1	1
Venus	0.723	0.91	1	2.2
Mars	1.524	0.38	0.0064 (average)	0.15
Jupiter	5.203	2.36 (equat.)	1	0.01
Saturn	9.572	0.92 (equat.)	1	0.01
Titan	9.572	0.14	1.5 (at surface)	0.27

For Venus, Jupiter, and Saturn, flight is assumed to be at the one bar level Does not include effect of atmospheric opacity

Solar energy vs altitude in the Venus atmosphere: data from Venus atmospheric probes

•At surface, power available is 10% of exoatmospheric power at 1000 nm, <1% at 450 nm

Solar Airplane Figure of Merit

- •50-60 km above surface, Venus atmosphere density profile similar to Earth's
 - Airplane design can use Earth experience
- •Gravity 90% of Earth's
 - Powered flight easier
- Above the clouds, Venus has more sunlight than Earth
 - •Solar flight is easier on Venus than on Earth
- •Acid droplets in atmosphere require all exposed surfaces be corrosion resistant
 - Avoid exposed metal surfaces.
 - •All metal surfaces need passivation coating
 - Acid-resistant materials are well developed technology

Initial sketch of wing-folding for small aircraft for Venus

Aeroshell diameter 1.2 meters

2000 version fold line

Aircraft concept was essentially a flying-wing design. A small tail gives a small amount of additional control authority with no additional fold.

Early Venus aircraft design: 3-D modelled

Venus airplane initial concept artist's conception by Les Bossinas

Variant 2000 small Venus aircraft

Chris LaMarre's Venus Airplane configuration August 2001

 $S = 1.6 \text{ m}^2$

b = 4.38 m

AR = 12

Mass = 15 kg

DF 101 and SG8000 airfoils investigated

Geoffrey A. Landis

Venus Aircraft

Design concept 2002

2002 folding concept

Venus airplane unfolding

Folding for initial RASC version

3.0m Aeroshell

RASC- August 2003 (closer to final)

•http://www.lpi.usra.edu/vexag/may2008/presentations/19Landis.mov

Venus Aircraft

Geoffrey A. Landis
Venus

Venus airplane: plan view

Aircraft folded into aeroshell 3.7 meter diameter aeroshell -the size of the Viking lander entry system-Aeroshell shape based on Mars Pathfinder Side view Top view

RASC Venus airplane Visualization

Venus Airplane entry mass

VENUS AIRPLANE MASS SUMMARY

Mass Fraction	Mass (kg)	Source				
20%	103					
7%	36.05	Pioneer				
13%	66.95	Pioneer				
12%	61.80	Pioneer				
8%	41.20	Pioneer				
10%	51.50	Pioneer				
15%	77.25	Mars Airplane				
15%	77.25	Mars Airplane				
100%	515					
30%	155					
	20% 7% 13% 12% 8% 10% 15% 15% 100%	20% 103 7% 36.05 13% 66.95 12% 61.80 8% 41.20 10% 51.50 15% 77.25 100% 515				

Total With	
Contingency	670

NOTE: Mass Fractions Based off Mars Airplane Data Venus Pioneer

•2008. Image courtesy of Greg Thanavaro, Boston University Dept. of Aerospace Engineering

Geoffrey A. Landis. Venus Aircraft

Mars airplane

- •6.25 m span
- Aspect ratio 5.6
- •101 kg including margin

ARES Mars airplane demonstration models

Geoffrey A. Landis

Venus Aircraft

Power Required to fly at wind speed versus solar availability

Power Required to fly at wind speed versus solar availability

Wind model used

Publications

- •G. Landis, "Exploring Venus by Solar Airplane," STAIF Conference on Space Exploration Technology, Albuquerque NM, Feb. 11-15, 2001. *AIP Conference Proceedings Volume 552*, 16-18.
- •G. Landis, C. LaMarre and A. Colozza, "Solar Flight on Mars and Venus," 17th Space Photovoltaic Research and Technology Conf., NASA John Glenn Research Center, Cleveland OH, November 10-13, 2001; NASA CP-2002-211831, 126-127.
- •G. Landis, C. LaMarre and A. Colozza, "Atmospheric Flight on Venus," paper AIAA-2002-0819, *AIAA 40th Aerospace Sciences Meeting*, Reno NV, January 14-17, 2002. *NASA Technical Memorandum 2002-211467* (2002).
- •G. Landis, C. Lamarre, and A. Colozza, "Venus Atmospheric Exploration by Solar Aircraft," *Acta Astronautica, Vol. 56*, No. 8, April 2005, 750-755. Paper IAC-02-Q.4.2.03, 53rd International Astronautical Congress, Houston TX, Oct. 2002.
- •G. Landis, C. LaMarre and A. Colozza, "Atmospheric Flight on Venus: A Conceptual Design," *Journal of Spacecraft and Rockets, Vol 40,* No. 5, 672-677 (Sept-Oct. 2003).
- •A. Colozza, G. Landis, and V. Lyons, "Overview of Innovative Aircraft Power and Propulsion Systems and Their Applications for Planetary Propulsion," *NASA Technical Memorandum TM 2003-212459* (2003).
- •G. Landis and A. Colozza, "Solar Airplane for Venus, " *Research and Technology 2003, NASA TM 2004-212729*, 47-48 (2004).
- •G. Landis, "Robotic Exploration of the Surface and Atmosphere of Venus," *Acta Astronautica, Vol. 59*, 7, 517-580 (October 2006). Presented as paper IAC-04-Q.2.A.08, 55th International Astronautical Federation Congress, Vancouver BC, Oct. 4-8 2004.
- •A. Colozza and G. Landis, "Evaluation of Long-Duration Flight on Venus," paper AIAA 2005-7156, AIAA Infotech Aerospace Conference 2005, Arlington VA, September 26-29, 2005. *NASA Technical Memorandum* TM-2006-214452 (2006).

(simplified) Aerodynamics of flight on Venus

For flying at a given velocity:

- $\cdot C_1 A = 2mg/\rho V^2$
- •To fly faster, we can *either* decrease the wing area at constant C_L , or else decrease C_L , and hence fly at a less-optimum lift conditions
- •Power = drag force times velocity
 - •the simplifying assumption that drag is proportional to lift via L/D (lift to drag) ratio becomes poor for flight far from optimum C_L
 - •Optimally, you would want to stay at optimum C_L and vary wing area
 - •But the constant L/D approximation ignores parasitic drag, which becomes more important as wing area decreases
- $\bullet P = mgV/(L/D)$
 - •If you could optimize everything and ignore parasitic drag, the power required to fly is independent of density and proportional only to velocity
- •But, for a solar aircraft, P is proportional to intensity time wing area A
- Iterative design process needed
- •Too simplified: Parasitic drag can't be ignored!

Geoffrey A. Landis

Venus Aircraft

